Constraining a Generative Word Alignment Model with Discriminative Output
نویسندگان
چکیده
منابع مشابه
Discriminative Word Alignment with a Function Word Reordering Model
We address the modeling, parameter estimation and search challenges that arise from the introduction of reordering models that capture non-local reordering in alignment modeling. In particular, we introduce several reordering models that utilize (pairs of) function words as contexts for alignment reordering. To address the parameter estimation challenge, we propose to estimate these reordering ...
متن کاملRefining Word Alignment with Discriminative Training
The quality of statistical machine translation systems depends on the quality of the word alignments that are computed during the translation model training phase. IBM alignment models, as implemented in the GIZA++ toolkit, constitute the de facto standard for performing these computations. The resulting alignments and translation models are however very noisy, and several authors have tried to...
متن کاملDiscriminative Word Alignment with Conditional Random Fields
In this paper we present a novel approach for inducing word alignments from sentence aligned data. We use a Conditional Random Field (CRF), a discriminative model, which is estimated on a small supervised training set. The CRF is conditioned on both the source and target texts, and thus allows for the use of arbitrary and overlapping features over these data. Moreover, the CRF has efficient tra...
متن کاملDiscriminative Word Alignment with Syntactic Features
This report introduces a study on syntactic features used in a discriminative word alignment model. The features are implemented on a state-of-the-art discriminative word alignment system. The syntactic features are extracted from parse trees. Three types of syntactic features are experimented in this work: one global tree path feature and two first order tree features. Experimental results sho...
متن کاملDiscriminative Word Alignment via Alignment Matrix Modeling
In this paper a new discriminative word alignment method is presented. This approach models directly the alignment matrix by a conditional random field (CRF) and so no restrictions to the alignments have to be made. Furthermore, it is easy to add features and so all available information can be used. Since the structure of the CRFs can get complex, the inference can only be done approximately a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2010
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e93.d.1976